Book Description

The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing, Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about

Changing the notion of computation itself, at the most basic level. The fundamental unit of computation is no longer the bit but the quantum bit. Or qubit. This comprehensive introduction to the field offers a thorough exposition of quantum computing and the underlying concepts of quantum physics, explaning all the relevant mathematics and offering numerous examples. With its careful development of concepts and thorough explanations, the book makes quantum computing accessible to students and professionals in mathematics, computer science, and engineering. A reader with no prior knowledge of quantum physics (but with sufficient knowledge of liner algebra) will be able to gain a fluent understanding by working through the book.

The text covers the basic building blocks of quantum information processing, quantum bits and quantum gates, showing their relationship to the key quantum concepts of quantum measurement, quantum state transformation, and entanglement between quantum subsystems; it treats quantum algorithms, discussing notions of complexity and describing a number of simple algorithms as well as the most significant algorithms to date; and it explores entanglement and robust quantum computation, investigating such topics as quantifying entanglement, decoherence, quantum error correction, and fault tolerance.

Table of Contents

Prefac	Preface	
01	Introduction	01
I	QUANTUM BUILDING BLOCKS	07
02	Single-Qubit Quantum Systems	09
03	Multiple-Qubit Systems	31
04	Measurement of Multiple-Qubit States	47
05	Quantum State Transformations	71
06	Quantum Versions of classical computations	99
II	Quantum Algorithms	123
07	Introduction to Quantum Algorithms	125

08	Shor's Algorithm	163	
09	Grover's Algorithm and Generalizations	177	
III	ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM COMPUTATION	203	
10	Quantum Subsystems and Properties of Entangled States	205	
11	Quantum Error Correction	245	
12	Fault Tolerance and Robust Quantum Computing	293	
13	Further Topics in Quantum Information Processing	311	
APPENDIXES			
		329	
A	Some Relations between Quantum Mechanics and Probability Theory	331	
В	Solving the Abelian Hidden Subgroup Problem	341	

About Author

Eleanor Rieffel is a research scientist at NASA Ames Research Center. Wolfgang Polak is a Computer Science Consultant.